Important Notice:

Practice-It will be discontinued as of November 1st, 2024. After this date, the website will remain online for a transitional period, but login will be restricted to University of Washington NetID authentication. This marks the next phase towards the platform's full retirement. Thank you for your use and support of the application over the years.

If you are looking for an alternative, a similar tool, CodeStepByStep, was developed independently by the original author of Practice-It, and is available at codestepbystep.com**

logo Practice-It logo

topologicalSort

Language/Type: Java graphs collections
Author: Marty Stepp (on 2013/03/25)

Write a method named topologicalSort that could be added to the SearchableGraph class, that returns a List of vertices representing a topological sort of the graph. (Note that this problem is asking you to add a method to SearchableGraph that would be placed inside the graph class itself, not an external method that accepts a graph as a parameter.)

Recall that a topological sort ordering is an arrangement of the vertices such that for every directed edge (v, w), vertex v appears before vertex w in the list. So for the graph in the diagram below, one valid order to return would be the list [B, A, C, D, E, F]. Another valid order would be [A, B, D, C, F, E]. The exact order of the list you return does not matter as long as it satisfies the topological sort property described previously. If the graph does not have any valid topological sort orderings, your method should return null. If the graph is empty, return an empty list. If the graph contains only a single vertex, return a list containing only that vertex.

       B ---> C ----+
       |      |     |
       |      |     |
       |      v     v
       |      E     F
       |      ^     ^
       |      |     |
       v      |     |
A ---> D -----+     |
       |            |
       +------------+

You should not modify the contents of the graph (such as by adding or removing vertices or edges from the graph). A solution that does so can receive partial credit but will receive a significant deduction. You may assume that the graph and its vertices are not null. You may construct auxiliary collections as needed to solve this problem. Recall that the SearchableGraph class has the following methods that you may call as needed to solve the problem:

public interface Graph<V, E> {
    public void addEdge(V v1, V v2);
    public void addEdge(V v1, V v2, E e);
    public void addEdge(V v1, V v2, int weight);
    public void addEdge(V v1, V v2, E e, int weight);
    public void addVertex(V v);
    public void clear();
    public void clearEdges();
    public boolean containsEdge(E e);
    public boolean containsEdge(V v1, V v2);
    public boolean containsPath(List<V> path);
    public boolean containsVertex(V v);
    public int cost(List<V> path);
    public int degree(V v);
    public E edge(V v1, V v2);
    public int edgeCount();
    public Collection<E> edges();
    public int edgeWeight(V v1, V v2);
    public int inDegree(V v);
    public Set<V> inverseNeighbors(V v);
    public boolean isDirected();
    public boolean isEmpty();
    public boolean isReachable(V v1, V v2);         // depth-first search
    public boolean isWeighted();
    public List<V> minimumWeightPath(V v1, V v2);   // Dijkstra's algorithm
    public Set<V> neighbors(V v);
    public int outDegree(V v);
    public void removeEdge(E e);
    public void removeEdge(V v1, V v2);
    public void removeVertex(V v);
    public List<V> shortestPath(V v1, V v2);        // breadth-first search
    public String toString();
    public int vertexCount();
    public Set<V> vertices();
}
Type your solution here:


This is a partial class problem. Submit code that will become part of an existing Java class as described. You do not need to write the complete class, just the portion described in the problem.

You must log in before you can solve this problem.


Log In

If you do not understand how to solve a problem or why your solution doesn't work, please contact your TA or instructor.
If something seems wrong with the site (errors, slow performance, incorrect problems/tests, etc.), please

Is there a problem? Contact a site administrator.